Série 2

Solution 1. a) $E \cap F^c \cap G^c$;

- b) $E \cup F \cup G$, ou encore $(E^c \cap F^c \cap G^c)^c$;
- c) $(E \cap F \cap G)^c$;
- d) $(E \cap F \cap G^c) \cup (E \cap F^c \cap G) \cup (E^c \cap F \cap G)$.

Solution 2. Clairement,

- $A \setminus B = A \cap B^c = (A^c \cup B)^c$;
- $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A^c \cup B)^c \cup (A \cup B^c)^c$.

Comme la tribu \mathcal{F} est fermée sous les opérations unions dénombrables et compléments, chacun de ces ensembles fait partie de \mathcal{F} .

Solution 3.
$$A_{\infty} = \{\omega \in \Omega : \exists n \in \mathcal{N}^*, \forall k \geq n, \omega \in A_k\} = \bigcup_{n=1}^{\infty} \bigcap_{k \geq n} A_k$$
. Il s'agit en fait de

l'ensemble des réalisations de l'espace fondamental Ω qui appartiennent à une infinité de A_k . On parle de limite supérieure des A_k et on note $\limsup_n A_n$.

Solution 4. a) $\Omega = \mathcal{N}$.

b)
$$P(A_k) = \left(\frac{5}{6}\right)^k \frac{1}{6}$$
 et $\sum_{k>0} P(A_k) = \frac{1}{6} \frac{1}{1-5/6} = 1$.

c) i)
$$E_p = \bigcup_{k \ge 0} A_{2k}$$
 et $P(E_p) = \frac{1}{6} \sum_{k \ge 0} \left(\frac{5}{6}\right)^{2k} = \frac{6}{11}$;

ii)
$$P(E_i) = \frac{1}{6} \sum_{k>0} \left(\frac{5}{6}\right)^{2k+1} = \frac{5}{11}$$
.

Solution 5. On a,

$$\lim_{n \to \infty} \Pr\left(\bigcap_{i=1}^{n} A_{j}\right) = \lim_{n \to \infty} 1 - \Pr\left\{\left(\bigcap_{i=1}^{n} A_{j}\right)^{c}\right\}$$

$$= 1 - \lim_{n \to \infty} \Pr\left(\bigcup_{j=1}^{n} A_{j}^{c}\right)$$

$$\stackrel{(*)}{=} 1 - \Pr\left\{\left(\bigcap_{j=1}^{\infty} A_{j}^{c}\right)^{c}\right\}$$

$$= 1 - \Pr\left\{\left(\bigcap_{j=1}^{\infty} A_{j}\right)^{c}\right\}$$

$$= \Pr\left(\bigcap_{j=1}^{\infty} A_{j}\right).$$

En utilisant **Note on theorem 8**, (e) du cours.

Solution 6. Si la réponse est 1/4 alors, comme 2 choix de réponses sur 4 sont '1/4', la réponse doit en fait être 1/2. C'est une contradiction. Donc la réponse ne peut pas être 1/4.

Si la réponse est 1/2 (ou 1) alors, comme '1/2' (ou '1') correspond à 1 choix de solution sur 4, la réponse doit être 1/4. C'est encore une contradiction. Donc la réponse ne peut pas être 1/2 (ni 1).

Ainsi, aucun des réponses proposées n'est correct. Donc la probabilité de choisir la réponse correcte est 0.